CBRIC AHIS IROJECI

A cooperative effort between:

<u>Goals</u>

Introduce probabilistic 14 day meteorological forecasts (ensembles) into a river forecast system.

Capture and display the uncertainty.

Verify the process.

Method

Medium Range Forecast Model Downscale to Model Variables

Mean Areal Temperature and Trecipitation Ensembles

EST Model

Probabilistic River Forecasts

Medium Range Forecast (MRF) Model

- Global Meteorological Model
- Many Atmospheric Variables
- Frozen Version
- · Run Daily at CDC
- ~150km Spatial Resolution

MRF Spatial Resolution

WAY TOO LARGE!

Need to Relate to Basin...

Downscaling

- •2m air temp
- Trecipitation
- •700mb Relative Humidity
- ·Sea Level Tressure
- •10m Vector Wind
- •Total Column Precipitable Water

Basin Scale Variables:

- •Mean Areal Temperature
- •Mean Areal Precipitation

Downscaling Method

1. Relates historical MRF scale variables to historical basin scale variables through multivariate linear regression equations. For example:

Basin MAT = $a_1(MRF)$ Trecipitation $+ a_2(MRF)$ wind + ...

- 2. Equations developed in (1) are applied to future MRF forecasts to produce forecasts of basin scale variables.
- 3. Multiple values at a particular time step are generated to create ensembles.

Downscaling Results

Example:

26 Ensembles of MATs for Each Sub-Basin

Downscaling Results

MRF is colder than normal in this case.

EST Method

EST uses initial states from the operational hydrological model along with ensembles of MAT | MAT as input.

Each ensemble is ran through the model.

Ensembles of streamflow are produced.

Ensemble distributions are analyzed and turned into probabilistic forecasts.

Schematic of Using Ensembles from MRF(day 1-14) As Input to ESF

Ensembles From The 'Frozen' MRF

Ensembles From Historical Data

RUN EST - EACH BASIN - TWO WAYS - EACH DAY

Project Area: 27 Segments Above Cameo, Colorado River

EST Example

Probabilistic forecast (or model) verification requires a large dataset. This is accomplished through reforecasting.

Reforecasts done for every basin for every day between 1979 – 1999.

Reforecasts made with both reforecasted MRF and historical MAF | MAPs.

Following example from Granby, CO (GBYC2) reforecast for May 1, 1985.

Input into EST

MRF derived MAT/MAPs are attached to historical years ("ensembles") and 'fed' to ESP. Note MRF is warmer in first week

Input into EST

MRF derived MAT/MAPs related to the entire year of historical ensembles.

ESP flow time series

Hourly instantaneous flow ensembles are created by ESP and saved. MRF shows higher flows than historical when it is warmer (during the first week). These may be converted into probabilistic forecasts...

ESP peak flow

Peak flow forecasts shown as Probability Density Functions (PDFs). MRF shows higher probabilities in higher flows for two weeks.

Web Page Example

Probabilities from ESP
(shaded) Using Historical
MAPs and MAPs
Equally Weighted
Plotted with Deterministic
Forecast and Historical
Exceedance Values

Web Page Example

Probabilities from ESP
(shaded) Using Historical
MAPs and MAPs
Equally Weighted and
ESP (lines) Using Maps
And Mats Derived from
The MRF Ensembles
Plotted with Deterministic
Forecast and Historical
Exceedance Values

Information We Will Verify

Ranked Probability Skill Score (RPSS) for each forecast day and month using measured runoff and simulated runoff produced using: (1) SDS output and (2) ESP technique

Credit: Lauren Hay, USGS, presentation: "Hydrologic Modeling in Mountainous areas"

ESP volumes

Examine how forecasts in individual years are modified by changes to input MAT/MAPs

Future Plans

Use Statistical Weather/Climate Generator In Lieu of Historical Ensembles

Use Experimental Technique to Downscale CPC Forecasts/Apply to Historical and WX/Generator – nino 3.4 composites

Use ETA Forecasts from reforecast project

More r(v)igorous verification